Probing the CMP‐Sialic Acid Donor Specificity of Two Human β‐d‐Galactoside Sialyltransferases (ST3Gal I and ST6Gal I) Selectively Acting on O‐ and N‐Glycosylproteins
نویسندگان
چکیده
Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human β-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.
منابع مشابه
CMP substitutions preferentially inhibit polysialic acid synthesis.
It is widely reported that derivatives of sugar moieties can be used to metabolically label cell surface carbohydrates or inhibit a particular glycosylation. However, few studies address the effect of substitution of the cytidylmonophosphate (CMP) portion on sialyltransferase activities. Here we first synthesized 2'-O-methyl CMP and 5-methyl CMP and then asked if these CMP derivatives are recog...
متن کاملPhylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate β-Galactoside α2,3/6-Sialyltransferases (ST3Gal and ST6Gal)
Cell surface of eukaryotic cells is covered with a wide variety of sialylated molecules involved in diverse biological processes and taking part in cell-cell interactions. Although the physiological relevance of these sialylated glycoconjugates in vertebrates begins to be deciphered, the origin and evolution of the genetic machinery implicated in their biosynthetic pathway are poorly understood...
متن کاملStructure-based mutagenic analysis of mechanism and substrate specificity in mammalian glycosyltransferases: porcine ST3Gal-I.
Sialyltransferases (STs) play essential roles in signaling and in the cellular recognition processes of mammalian cells by selectively installing cell-surface sialic acids in an appropriate manner both temporally and organ-specifically. The availability of the first three-dimensional structure of a mammalian (GT29) sialyltransferase has, for the first time, allowed quantitative structure/functi...
متن کاملThe animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach.
The animal sialyltransferases are Golgi type II transmembrane glycosyltransferases. Twenty distinct sialyltransferases have been identified in both human and murine genomes. These enzymes catalyze transfer of sialic acid from CMP-Neu5Ac to the glycan moiety of glycoconjugates. Despite low overall identities, they share four conserved peptide motifs [L (large), S (small), motif III, and motif VS...
متن کاملIdentification of linkage-specific sequence motifs in sialyltransferases.
Eukaryotic sialyltransferases (SiaTs) comprise a superfamily of enzymes catalyzing the transfer of sialic acid (Sia) from a common donor substrate to various acceptor substrates in different linkages. These enzymes have been classified as ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia families based on linkage- and acceptor monosaccharide-specificities and sequence similarities. It was recognized early ...
متن کامل